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Diffusion of moving particles in stationary disordered media is studied using a 
phenomenological mode-coupling theory. The presence of disorder leads to a 
generalized diffusion equation with memory kernels having power law long time 
tails. The velocity autocorrelation function is found to decay like t -(a/2+1), 
while the time correlation function associated with the super-Burnett coefficient 
decays like t -d/2 for long times. The theory is applicable to a wide variety of 
dynamical and stochastic systems including the Lorentz gas and hopping 
models. We find new, general expressions for the coefficients of the long time 
tails which agree with previous results for exactly solvable hopping models and 
with the low-density results obtained for the Lorentz gas. Finally we mention 
that if the moving particles are charged, then the long time tails imply that there 
is an w a/2 contribution to the low-frequency part of the frequency-dependent 
electrical conductivity. 

KEY WORDS: Diffusion; random media; fluctuations; long time tails; 
Lorentz model; hopping models; velocity correlation functions; mode cou- 
pling theory; diffusion coefficients; Burnett coefficients. 

1. INTRODUCTION 

In this paper we consider some features of the theory of diffusion of 
particles in a stationary random medium. Our aim is to construct a mode 
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coupling theory for describing the large distance and long time properties 
of diffusive processes. The result of this analysis is that the presence of 
disorder in the medium leads to long time correlations that must be taken 
into account when formulating a macroscopic diffusion equation. The 
resulting generalized diffusion equation includes memory kernels with slow 
power law decays, i.e., "long time tails." These occur in the ordinary 
diffusion term as well as in super-Burnett and higher-order terms. In 
particular, we will show that the diffusive memory kernel decays like 
t -(d+2)/2 for long times t, were d is the dimensionality of the system. In the 
context of conductivity problems this result corresponds to a frequency 
dependence of the conductivity as ~0 ~ 0. 

The theory presented here is applicable to a wide variety of dynamical 
and stochastic systems. As an important example, we will consider the 
Lorentz gas (1-3) where the medium is composed of fixed scatterers, usually 
hard spheres or hard disks. The scatterers are distributed at random, and 
noninteracting point particles move freely between elastic collisions with 
the scatterers. 

The theory can also be used to describe hopping conductivity. (4's~ Here 
the medium is a collection of centers from which a moving particle "hops" 
to neighboring centers with a randomly chosen set of transition rates that 
govern the jumps to neighboring sites. The "microscopic" motion of the 
diffusing particle must then be described by a master equation. 

Other applications of the theory are to the motion of a particle in a 
general random potential, of which the Lorentz gas may be considered a 
special case, and to electrical conduction in a random resistor network. In a 
subsequent paper we will apply our theory to a variety of examples 
including the Lorentz gas and several hopping problems. In the present 
paper we develop the general theory. 

We will treat all of these problems within the same framework by 
taking a coarse-grained view. That is, the description of the detailed 
structure of the medium is replaced by a simpler one, specified solely by a 
spatially varying diffusion tensor and a quantity related to the free volume; 
both of which will be defined below. Spatial variations in these quantities 
replace the disorder in the original medium. We then treat the resulting 
fluctuating diffusion equation by the methods of mode-coupling theory. 
These enable us to obtain the asymptotic long time parts of the memory 
kernels for the generalized diffusion coefficient and the super-Burnett 
coefficient. 

The motivation of this work stems from the close analogy between 
transport processes in fluids and transport processes in disordered diffusive 
media, particularly the Lorentz gas. In the case of fluids, long time tails 
were first discovered by Alder and Wainwright (6~ in their computer simula- 
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tions of a hard sphere fluid. They found that the velocity autocorrelation 
function (VAF) of a d-dimensional hard sphere fluid showed an asymptotic 
long-time decay proportional to t-a/2. Several theoretical explanations of 
the phenomenon have been given. Kinetic theory can be applied for 
general fluids at low density (7~ and for hard sphere systems at all fluid 
densities. (7-9) Phenomenological mode-coupling theories can be applied to 
fluids under general equilibrium conditions. These theories are derived by 
making certain assumptions about the decay of fluctuations through stages 
of approximate local equilibrium. (1~ An alternative to the latter ap- 
proach is provided by dynamical renormalization group theory, (14-j6) 
which also uses fluctuating hydrodynamic equations as a starting point. 

The results of all of these theories are in agreement with each other for 
both the VAF and time correlation functions related to higher-order 
transport coefficients, such as the super-Burnett coefficient. The compari- 
son between theory and computer simulations is good at low and moderate 
densities (~7) but the two seem to disagree at high fluid densities. (~8'19~ 

For the Lorentz gas the situation is much less satisfactory. Ernst and 
Weyland (2~ showed with the aid of low-density kinetic theory, that for this 
system the VAF of the moving particle exhibits a long time tail. However, 
owing to the absence of momentum conservation, it decays asymptotically 
for long times as t - (d/2+~, i.e., by one power t -1 faster than in a fluid. In 
computer simulations of the two-dimensional Lorentz gas at low densities 
Bruin (21) and Lewis and Tjon (22~ found a t -2 decay of the VAF but 
obtained a coefficient much larger than that predicted by Ernst and 
Weyland. More recent computer results, obtained by Alder and Alley, (23'24~ 
indicate that this disagreement is due to the strong density dependence of 
this coefficient. Extrapolation of their results to zero density yields agree- 
ment with the value of Ernst and Weyland at very low density, but the 
density range over which this agreement persists is inaccessible to the 
computer. Keyes and Mercer (25~ have extended kinetic theory to include 
excluded volume effects to second order in the density; however these 
corrections do not bring the theory into agreement with computer experi- 
ments. 

There have been several efforts to construct theories of the Lorentz gas 
at high densities based upon a hybrid of mode-coupling ideas and kinetic 
theory ideas. G6tze et a/. (26) use the Zwanzig-Mori projection operator 
formalism to construct a self-consistent kinetic theory which is then solved 
in a mode-coupling approximation. Keyes and collaborators (27'28) have 
recently extended this method. While these theories lead to interesting 
predictions for the behavior of the diffusion coefficient near its percolation 
threshold they are not in good agreement with the computer experiments 
for the amplitude of the long time tail. 
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The situation sketched above motivated us to develop a mode-couplin~ 
theory for the case of tagged particle diffusion in a spatially fluctuatin~ 
stationary medium. From a formal viewpoint it was somewhat unsatisfac 
tory to have a well-developed mode-coupling theory based on the fluctuat 
ing Navier-Stokes equations describing fluid hydrodynamics, but no com 
parable theory for the simpler diffusion equation. Furthermore, we wantec 
to develop a simple theory that would permit a comparison with th( 
available computer results for the Lorentz gas and with exact result, 
obtained for several one-dimensional hopping models. In the end it turnec 
out that indeed a relatively simple mode-coupling theory describing th( 
type of systems could be derived, but comparison to computer simulation, 
is not straightforward. The reason is that the coefficient of the long time tail 
in the VAF involves the mean square of the spatial fluctuations of th( 
diffusion tensor about its average value. In general this quantity is n o  
readily available either from theory or from computer simulations. For 
number of one-dimensional hopping models it can be calculated and th~ 
validity of our mode-coupling equations is confirmed. For the Lorentz ga, 
in two and higher dimensions no results for these fluctuations are knowr 
except in the limit of low density of scatterers. 

The plan of the paper is as follows: In Section 2 the coarse-grainec 
description of the random medium is introduced and the parameter~ 
entering this description are specified. In Section 3 the mode-couplin~ 
equations associated with the coarse-grained description are introduced. I~ 
Section 4. relevant correlation functions are analyzed using mode-coupling 
theory and the long time properties of these correlation functions arc 
presented. The paper is concluded with a discussion of some points thai 
arise in this work. and with an indication of specific applications of th( 
theory which will be discussed in a subsequent paper. (29) 

2. QUENCHED AVERAGES AND COARSE-GRAINED DESCRIPTION 

We consider a random medium in a volume V described by a set ot 
parameters which we collectively call X. In the case of the Lorentz gas, the 
set X consists of the number of scatterers N and their positions, R 1 . . .  R jr. 
For hopping models, the set X consists of the positions of the lattice site~ 
and the set of transition rates connecting them. Our fundamental assump. 
tion is that an accurate coarse-grained description of diffusion in the 
medium can be obtained by replacing the exact microscopic description ot 
the sys temgiven by the set X with a more macroscopic description, in 
which the moving particles are described by a diffusion equation. This 
fluctuating diffusion equation can be used to calculate the response func- 
tion (density-density correlation function) from which all transport proper. 
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ties of the system can be derived. More precisely, we assume that there are 
two functions, a spatially varying diffusion tensor K(r,X), and a spatially 
varying free volume fraction ~p(r,X) relating the local current 3(r,t) of 
diffusing particles to the local gradient in the concentration of particles, 
c (r, t) 

J(r, 0 = - K ( r , X )  �9 V(c(r, (Z l )  

Here we assume that the variables J and c have been coarse grained and 
leave for later a discussion of the required properties of this coarse graining. 

In writing Eq. (2.1), we have made a second assumption; namely, that 
there are no interactions between the diffusing particles so that J is linearly 
related to the gradient of c. It follows from this that ~ must be proportional 
to the equilibrium or stationary concentration of particles since, in the 
absence of sources and sinks, currents can arise only when there is a 
deviation from the stationary distribution. First we introduce the concept of 
quenched averages; next we discuss the coarse-graining method. 

We assume that the large volume and long time properties of a single 
realization of the medium are identical to the average properties of an 
ensemble of similar realizations. This assumption is less secure than the 
analogous assumption in classical statistical mechanics since the medium 
itself is stationary and therefore has no ergodic properties. On the other 
hand, since the moving particles diffuse they will explore a large volume 
within the medium and the replacement of a single realization by an 
ensemble should be safe. What we are going to do is replace the spatial 
averaging induced by the random motion of the particles by ensemble 
averaging. It is then mathematically very convenient to employ an ensem- 
ble with a distribution p(X) to describe the medium so that local fluctua- 
tions in the medium are represented by fluctuations from member to 
member within the ensemble. Now we turn our attention to the definition 
of ~p(r,X) that we will use here. As noted above ~(r,X) is proportional to 
the equilibrium, or stationary distribution of particles in the configuration 
X. Then, to define ~(r,X) we let P(r ,X) be the equilibrium or stationary 
probability density for finding a single particle at position r in configura- 
tion X. The quantity tp(r,X) is defined to be proportional to P(r ,X) by 
means of the relation 

P(r, X)  = +(r, X) /~o(X)  (2.2) 

where 

) = fdr (r,X) (2.3) 4 0(x 

All spatial integrations in this paper extend over the whole volume V of the 
system. This prescription for +(r, X) is not unique since ~ is defined up to 
an arbitrary multiplicative function of X. To fix this definition for tp(r, X) 
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we require that ~(r, X) have the value unity whenever the moving partick 
can be considered as "free" at the point r. For Lorentz models this meam 
that +(r,X) is unity whenever the moving particle is not interacting wit~ 
any scatterers. For stochastic models when the stationary state distributior 
P(r ,X) is uniform on the lattice sites +(r,X) is set equal to 1. For thos( 
models where P(r, X) is not uniform we will set ~(r, X) = aP(r, X) and fix 
the normalization constant +0(X) for our own convenience in each model 
Under these circumstances %(X) may be interpreted as the free volum~ 
available to a moving particle. The prescription for +(r,X) will perhap., 
become clearer in the next paper when we consider specific examples. 

In order to study time correlation functions we will also need th~ 
equilibrium distribution function for the phase of a moving particle in 
single configuration X. Let P(r, v, X) be the probability density for findin~ 
a single particle at position r with velocity v, given that it is in configuration 
X. The single-particle distribution P(r, v,X) is then related to ~(r, X) by 

f a, e(r, v,x ) = )/  ,o( X ) (2.4) 

From P(r, v,X) we can further construct a grand canonical ensemble fox 
the distribution function of many moving particles within a configuration 
X. Since the particles are noninteracting, the distribution of numbers ot 
particles is a Poisson distribution. Let PM(rl . . .  rM; v 1 . . .  vM,X) be the 
probability density for finding M particles with phases rlv 1 . . .  rMv M within 
the configuration X: 

M 
1 PM(rI . . . r M ;Vi . . .  V M,X)  = ~ (~o(X))Me -~%(x) I I  P(rj, v j ,X ) 

j = l  

(2.51 
Here ~ determines the expected number of particles, and for statistical 
mechanical systems can be identified with the fugacity, ~" = exp fl/z where tl 
is the chemical potential, and fl the inverse temperature. We denote an 
average over PM by ( . - .  }x and an average, first over PM and sub- 
sequently over p(X) by ( . . .  }. Note that the average ( - . .  }x is a 
"quenched" average in the sense that the scatterers are regarded as bein~ 
fixed with properties specified by X. Deviations from these averages are 
defined by 

i=i-<i>,< (2.6) 
8 f = f -  ( f }  

Next, we turn our attention to the coarse-graining method. In order tc 
make our fundamental assumption, necessary for the mode-coupling analy- 
sis of the diffusion equation more explicit, we assume that the spatial 
correlations in the random medium are sufficiently short ranged (with 
correlation length 10). 
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Then, suitable coarse graining can be obtained by discarding all 
the Fourier components with wave number k greater than a cutoff, k c 
= 27r/Lc, where Lc >> l 0, while leaving smaller wave vector components 
unchanged. This determines the length and time scales at which the theory 
is expected to become accurate. 

In this coarse-grained description the local current J(r, t) of diffusing 
particles is assumed to obey the constitutive relation (2.1), which, as we 
now show, is in agreement with irreversible thermodynamics for those 
models where a local chemical potential /x(r, t) can be defined. First we 
calculate the quenched average density (c(r))  x of moving particles where 

M 

c(r) = ~ 6(r - r/) (2.7) 
i = 1  

The result follows from (2.5) as 

( c ( r ) )  X = ~ ( r ,  X)  (2.8) 

In order to construct irreversible thermodynamics, we must generalize (2.8) 
to local equilibrium and we imagine that the chemical potential/z(r, t) is a 
slowly varying function of position. We then obtain 

(c(r,  t ) ) X , l o c a  1 = eB~(r't)~b(r, S ) (2.9) 

If we identify (c(r, t))x,loca 1 with c(r, t) in (2.1), we see that the constitutive 
relation can be written in the standard form of a linear law J(r, t ) =  
-L ( r ,  t) .  V/z(r, t) with a local Onsager coefficient L(r, t). It is more conve- 
nient to use the variables K and Lp in (2.1) because they depend only on the 
medium and not on the moving particles. 

3. MODE-COUPLING EQUATIONS 

Our next goal is to obtain a mode-coupling expansion of the fluctuat- 
ing diffusion equation. To do this we begin by combining the continuity 
equation with the constitutive relation (2.1), which yields a (spatially) 
fluctuating diffusion equation 

~c(r,t) [ c(r, t)  ] (3.1) -v .K(r ,x) .  v 

The equation can be rewritten in terms of fluctuating quantities as 

A ~1 V - 6 K ( r , X ) . V ~ ( r , t )  3--- c(r , t )  = DV2~(r,t) + 
Ot 

D V2e (r, t)6~(r, X ) (3.2) 

where ~(r,t) is the fluctuation in c about the average, (C)x ,  in the 
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"quenched" configuration, and 

+ = (~b(r,X)) (3.3a 

is the average free volume fraction and 

D =- ( K ~ ( r , X ) ) / d ~  (3.3b 

is the bare diffusion coefficient for the system. We use the summatior 
convention in (3.3b). Terms which are second order in the fluctuatin t 
quantities have been omitted from (3.2). In Section 4 we show that they d( 
not contribute to the asymptotically dominant time tails. 

We next introduce Fourier and Laplace transforms 

h ( t )  = f dr e - i k .  7(r,  t) 
(3.4 

Az = ~0 ~ dt e -  Zyk(/) 
The allowed values of k depend on the boundary conditions at the walls o: 
the container. Here periodic boundary conditions will be used, so tha 
k,, = 2 ~ r m J L  with a = x , y  . . . .  and m s = 0, + 1, _+2 . . . .  With the aid o: 
these transforms the fluctuating diffusion equation can be written in th, 
form 

zdkz - ~k(0) = --k2Dek~ - Idkz (3.51 

with the operator, 1, defined by 

ffk = ~ ~ ( k q :  6Kk_ q - k'DS~,_q)f. (3.6: 

and 

) (3.7; 

The symbol fq indicates a sum over wave numbers which are restricted t( 
being less than a cutoff k c, where k c = 2 ~ r / L  C is determined by th~ 
coarse-graining length scale. For large volumes the sum approaches ar 
integral. 

Equations (3.2) and (3.5) are formally rather similar to the mode 
coupling equations found in the theory of fluids (12-16) with two notabk 
differences. Here  the "modes" which are coupled to the dynamical mod, 
Ck, are the Fourier components of the spatially varying quantities 8K an( 
8~. Thus the modes in our theory have no time dependence (28) and ar~ 
complicated, nonthermodynamic variables, whereas for fluids the mode: 
are the hydrodynamic conserved variables whose fluctuations are deter 
mined thermodynamically. Moreover, the dominant mode coupling effect: 
in fluids are due to the presence of convective terms in the fluctuatint 
equations, while here these terms are absent. 
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4. FLUCTUATION EXPANSIONS OF CORRELATION FUNCTIONS 

The fluctuating diffusion equation will be used to calculate the long 
time behavior of those time correlation functions that determine the diffu- 
sive properties of the system. The most fundamental of these, from which 
all other correlation functions of interest may be obtained directly, is the 
intermediate scattering function. This is the Fourier transform of the 
correlation function of the density of moving particles. It is written as 

F(k,  t) = (~_k(0)ek(t))/(a_k(0)~k(0)) (4.1) 

where the average is defined below (2.5). Since the moving particles are 
noninteracting and Poisson distributed, the average (4.1) over M moving 
particles can be reduced to an average over a single moving particle, by 
virtue of the relation ( M ( M -  1)) = ( M )  2, and F(k, t) may alternatively 

b e  written as the Fourier transform of the self-correlation function 

F(k , t )  = ~, eik'ar'( 0 / ( M )  =- (eZk'ar(~ (4.2) 
i=1 / 

Here kr(t) = r(t) - r(0) is the displacement in the time t of a single tagged 
particle and we have used the relation (~_t(0)~k(0)) = ( M ) .  In our calcu- 
lations it is most convenient to use the response function (~_t~kz), which is 
defined as the Laplace transform of F(k, t) and to determine its small z 
behavior. It is usually expressed in a wave number and frequency- 
dependent diffusion coefficient U(k,z): 

e e \ = (e  t e t ) / { z  + k2U(k,z)}  (4.3) --k  k z /  

Here and in the following we use the notation ~k = Ck(O) �9 For fixed z one 
may expand U(k, z) in powers of (ik) 2 as 

U(k, z) = Uo(z ) - k2U2(z) + O(k 4) (4.4) 

where Uo(z) and U2(z ) are the frequency-dependent diffusion coefficient 
and (modified) Burnett coefficient, respectively. The diffusion coefficient 
itself is given by D = Uo(O ). Odd powers of (ik) in (4.4) vanish due to 
spatial isotropy of the medium. 

The generalized diffusion coefficient U(k, z) can be written as the sum 
of its bare value D and a wave number and frequency-dependent correc- 
tion, viz. 

U(k,z)  = D + r(~:,z) (4.5) 

Our basic assumption was that the small k and z behavior of components 
of ~k, in (4.3) may be calculated from the fluctuating diffusion equation. 
Thus, combining (3.5) and (4.3), one may express the correction term in 



486 Ernst et al, 

(4.5) as 

1 < ~ _ d ( z +  k2D + ~ ) - ~ )  
F(k,z) (4.6) 

k-- ~ (~_k{Z + k2D + l } - ' ~ k )  

The diffusive propagator (z  + k2D + I}  - l  may be expanded in powers ot 
I about the nonfluctuating propagator 

G = G(k , z )  ~ ( z  + k2D }-1 (4.7) 

with the result 

{ z + k2D + I } - ~ = G - GIG + GIGIG . . . .  (4.8) 

Substitution of the result into Eq. (4.6) yields an expansion for F(k, z) in 
powers of I of the form 

r (k ,  z )  - z + k 2 D  
k 2 

)< { (C-klGck} ( ~ - k l G I G c k ) ( ( ~ - k / G C k ) )  2 

(4.9) 

The terms not given explicitly are of cubic and higher order in I. The 
averages occurring in (4.9) contain Fourier-transformed correlation func- 
tions (t~_k3qSYk_l"""), where 8Yq stands for 8~q or 8Kg ~, By first 
performing the average over the moving particles in a frozen configuration 
we obtain using (B1) of Appendix B: 

(~ k~q)X m. ~V~6k, q --[- ~8~q_k (4.10) 

Hence ~_k~q inside an average ( .  �9 �9 } may be replaced by the right-hand 
side of (4.10). The correlation functions can be decomposed into short- 
ranged cluster functions with a correlation length l 0 much smaller than the 
coarse-graining length L c ---2~r/k C (see Appendix B). Since we are only 
interested in small wave numbers, we obtain the following results for the 
Fourier transforms with Iql, Ikl, Ill . . . .  < kc: 

<e_,ejr,_,>  <  08r0> (4.11) 

(~ kOq(~Yk_,SYt_q) ~ V~Sk,q(SVoSro) + f(&)oSYoSYo) 

An order of magnitude estimate for these averages is 

(8%81%}-- v+ rv0 
(4.12) 

< SqJo6 YoS Y o ) ~  V+ y 2v~ 
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where v 0 = l a is a microscopic correlation volume and ~p = (~b(r, X))  and 
Y = (Y(r, X)). After this preparation we can calculate the first term in the 
bracket in (4.9) for k < k c as 

( ~_klG~k) / { ~_k~k) ~ -- A+ Dk2 fqG( q, z) (4.13) 

where we have introduced 

a p = ( ( ~ d o ) 2 ) / V ~ y  2 (4.14) 

with the explicit form of &P0 given in (B5). 
The term with 3K vanishes from this expression because its coefficient 

is odd in q. Similarly we find that the second term in the brackets on the 
right-hand side of Eq. (4.9) is 

(~ jGIG~k) A,Dk2G ) fq - .  . ~ (k,z Dq2G(q,z) 
(c_kck) 

(3K~SKff~) k~ksG(k,z)~q~q~G( q,z ) 
+ V~2 

((~~ Dk2 fqDq2G(q,z)~G(l,z ) 
+ V q ~  

= Dk2G(k,z)[A+ + AK/d]fqDq2G(q,z) (4.15) 

To derive the last equality in (4.15) we first performed the q integral in the 
second term on the right-hand side of (4.15) and then used properties of 
isotropic tensors to write (3K~6KJ~)3& = (6K~Ko&)3,,Jd and we intro- 
duced 

A x = (3K~flSKg")/dV(Dtp) 2 (4.16) 

with the explicit form of 6K 0 given in (B5). In addition, the third-order 
fluctuation term ((6~0) 3) in (4.15) may be neglected for small z and 
sufficiently large coarse-graining volume Vr = ( 2 7 r / k j  = Lff. This can be 
seen by using the relation 

1 _ zfqO(q,z) (4.17) fqDq2G( q, z ) = -~ 

and comparing the third-order term with (4.13), showing that it is of 
relative order %/V~. Substitution of (4.13) and (4.10) into (4.9) yields 
finally with the help of (4.17) the small z behavior of F(k,z) in the form 

= - D  +aK/,q/v  

+(AK/d)z~Gtq,  z)+ dk2A~Gtq,  z)} (4.18) 



488 Ernst et al 

where the third term inside brackets in (4.9) has been neglected, as it is o 
relative order z, when compared to the last term kept in (4.18). The resul 
(4.18) is in the desired form of a k expansion: 

F(k,z)  = Fo(z ) - k2F2(z) + . - .  (4.19 

and the dominant small z singularities in F0(z ) and F2(z ) are given b y  th 
second and third term on the right-hand side of this equation, respective b 
The first term is a z-independent contribution to F(k,z), which togethe 
with the z-independent contributions of the neglected terms, renormalize 
the bare diffusion coefficient D in (4.5). 5 The estimates (4.12) show that thi 
term gives a contribution of order (Vo/Vc) to D, which can be neglected fo 
sufficiently large coarse-graining volumes. 

We have omitted terms in the mode-coupling oPerator I that aris, 
from second- and higher-order contributions to the diffusion equation (3.2~ 
The expression for I including both first- and second-order terms is 

+ ~ ~ ( k l  : # Kk_,a,,_q + Dk 2 a•k_,••,_ q ) ] f ,  (4.20 

We will denote the second set of terms on the right-hand side as thq 
"bilinear terms," l(2~/k, since they are proport ional  to products of tw~ 
fluctuating quantities. The contributions of the bilinear terms to (4.9) ther 
take the form 

( a_kI(2)G~k) / ( a_k~k) 

= Dk2G(k, z )A, /V c + ( D~((a~o)3) /V c V~ 3 } ~G(q, z) (4.21 

Terms of similar type have already been neglected before since they are o 
order Vo/V c compared to terms that we have kept. 

In a similar way one may analyze all higher-order terms in th, 
fluctuation expansion (4.9). Although we have not examined them all, i 
seems reasonable to conclude from the above analysis that all contribution 
to the right-hand side of (4.9) omitted in (4.18) are negligible for one of th, 
following reasons: they are smaller than the terms kept by a term of relativ, 
order Vo/Vc, or they are asymptotically less singular in z than the term 

5 Denteneer and Ernst (3~ have shown explicitly for the example of a one-dimensional hoppin 
model, where the exact diffusion coefficient and the exact coefficient of the long time tail i 
known, how higher-order fluctuations renormalize the bare coefficients to yield the exac 
ones. 



Long Time Tails in Stationary Random Media, I Theory 489 

kept. Therefore, the terms kept in (4.18) should contain the dominant small 
z singularities in the expansion coefficients U t, with l -- 0, 2. 6 

We conclude this section by giving the long time behavior of the 
generalized transport coefficients and correlation functions. The singulari- 
ties in I't(z ) and Ul(z) are related to the long time behavior of the inverse 
Laplace transforms. They can be obtained by observing that G(q, z) is the 
inverse Laplace transform of exp(-q2Dt). The inverse Laplace transform 
of the "velocity" correlation function q)2(t) [see (A4)] becomes for long 
times: 

q,z(t) ~ _ �89 )-a/2t-(a+2)/2 (4.22) 

The inverse Laplace transform of Uz(z ) which is the Burnett correlation 
function [see (A5)] becomes for t ~ 

~4(t) ~ D 2A+(4~rDt)- d/2 (4.23) 

In a similar way we obtain the following expressions for the long time 
behavior of the super-Burnett coefficient and modified super-Burnett coef- 
ficient defined in (A6): 

I DA~ 
- ]D4,~ 2~r(dZ2) (4~rDt) -a/2+' (d =p 2) 

D4(t) | DA~ (4.24) 

L | ~ log t (d = 2) 

and 

I 2A+ + A K |B - D 2) 2) 
B ( 0  + 

[D ~ log t (d = 2) 

The fluctuation formulas have been defined in (4.14) and (4.16) as 

_ 1 1 1 (6KgZ3Ko~,~> 
AI< V (D~) 2 d 

1 1 �9 A~- -  V r ( (8+~ 

(4.25) 

(4.26) 

6 W. Ggtze, Ref. 31, has presented some arguments for the presence of stronger z-singularities 
in r (k ,  z) than those found here. However, we have not found evidence of such singularities 
in our approach, and the relation between the two methods remains to be clarified. 
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in combination with (B5) of Appendix B: 

aKg e = f dr[ & e ( r , X ) -  8oBD~,] 

8+o= f dr[+(r,X)-q,] 
and 

(4.27' 

(4.281 
@ ( r , X ) )  = q, 

Finally, if we suppose that the moving particles carry a charge e, w{ 
can obtain the frequency-dependent conductivity, o(o~), from Uo(z) usin~ 
the generalized Einstein relation 

~(r = ( ce2/ kB T) Uo( io~ ) (4.291 

where c is the density of moving particles. The quantity Uo(z) can b~ 
obtained from (4.18) and (4.4)-(4.5) for z--) 0: 

Dq l-, (4.30 

5. D I S C U S S I O N  

In this paper we have developed a mode-coupling theory for the lon~ 
time properties of diffusion in a random medium. Although our theory i: 
based upon a phenomenological mode-coupling approach we believe that i 
gives formally exact results for the coefficients of the long time tails in th~ 
frequency-dependent diffusion coefficient and super-Burnett coefficient 
Our justification for this assertion is that the only features of the phenome 
nological approach which survive in the final result are the fluctuations iI 
the bulk quantities 8K0(X ) and 8~b0(X ). These features are independent o 
the coarse-graining scheme and can be given microscopic definitions. 

Our theory is based upon the standard mode-coupling methods use( 
for fluids and the results we obtain are similar to those obtained for fluid.. 
except that in the present case the long time tails decay with one highe: 
power of t-1. 

Although the underlying phenomenological equations are simpler iI 
the diffusive case, the results are more complex because the coefficients o 
the diffusive long time tails are given by fluctuations in nonthermodynamfi 
quantities 6 K o and &b 0. For the long time tails in fluids the amplitudes art 
proportional to thermodynamic fluctuations which can be easily evaluated 



Long Time Tails in Stationary Random Media. I. Theory 491 

On the other hand the fluctuations required in the present theory can rarely 
be evaluated exactly. 

The long time tails of the kind discussed in this paper also appear in 
the case of fluids, but there they decay with one higher power of t -  ~ than 
the dominant long time tails so that for very long times they are masked by 
the ordinary long time tails. 

One can see from the calculation presented here that a necessary 
condition for the validity of our results is that the relative fluctuations A~; in 
(4.16) and A~ in (4.14) remain small. For 2x K to remain small the average 
diffusion coefficient in (4.16) must be nonzero. If this were not true, then 
the perturbation expansion of (z + k2D + I}-~ about the nonfluctuating 
propagator {z + k2D }- i would not be well defined, and the results quoted 
for ~2, ~4, B(t), and D4(t ), in (4.22)-(4.27) would all diverge. This condi- 
tion makes our method inapplicable to those cases where one knows for 
other reasons that D = 0. Examples of such cases are the motion of 
particles in the overlapping wind-tree model, (32) where "retracing" events 
lead to a vanishing diffusion coefficient, the motion of particles in the 
overlapping Lorentz model at high density ~23'24~ when the trapping of the 
particles by the scatterers prevents them from diffusing through the system; 
as well as in some hopping models (4) where diffusion is destroyed by strong 
disorder. Similar restrictions apply to A+. For instance in the Lorentz gas 
with overlapping scatterers there exist regions where the moving particles 
are trapped, and diffusive regions where the particles are free. The average 
free volume fraction of the diffusive region as a function of the scatterer 
density exhibits a phase transition at the percolation density, and conse- 
quently zX~ in (4.14) will diverge at the density. 

In a subsequent paper (29~ we will apply the mode-coupling theory 
developed here to a number of specific models: 

(i) The deterministic Lorentz gas in d dimensions with spherical 
scatterers, which may or may not overlap each other. The random medium 
is the system of scatterers, characterized by the density of scatterers, n. (~-3) 

(ii) The one-dimensional stochastic Lorentz model where the moving 
particle is reflected by a scatterer with a probability p, and transmitted with 
a probability ( 1 - p ) .  The scatterers are randomly distributed on a 
line.(33, 34) 

(iii) The one-dimensional waiting time Lorentz model. The random 
medium is the same as in (ii) and the moving particles jump from one 
scatterer to its nearest neighbor with stochastically distributed waiting times 
between jumps. (33'35'36) 

(iv) The one-dimensional random barrier model, where the moving 
particle makes instantaneous jumps between neighboring sites on a regular 
lattice. The jump frequencies are independent random variables. (4,3~ 
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(v) Isotropic random jump rate models on regular d-dimensiona 
lattices. The jump rate, which is the same in all allowed directions is 
stochastic quantity, with a site-independent probability distribution. (41'42-* 

The method does not seem to be restricted to an analysis of diffusiv 
properties in media with static disorder using the diffusion equation with 
fluctuating diffusion coefficient, but it may be used equally well to discus 
the elastic properties of such media using the wave equation with fluctual 
ing elastic constants. In this manner one may determine quantities like th 
density of states and the inverse localization length. (44-46~ 
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NOTE ADDED IN PROOF 

We have been informed that P. Visscher (47) has recently obtaine~ 
identical results to ours by a different method. 

APPENDIX A 

We show how the transport properties of interest can be calculate~ 
from the intermediate scattering function F(k,t)  in (4.1) and (4.2). Firs 
consider the mean square displacement ((Ax(t))2), and higher moments o 
Ax(t), where the x direction is chosen parallel to k. The function F(k, t)i~ 
the generating function for these moments: 

1 r q T.,1 k4<[Ax(014), + . . .  (11 F(k, t )  = 1 - -~k2(kAx(t)j2>, + 

Related to these moments are the time-dependent diffusion coefficient D((  
and super-Burnett coefficient B(t), defined in terms of cumulants of the 
displacement according to (47'48) 

(127 
a 1 B ( t ) -  at 4! { ((2xx(t))4)" -3((Ax(t))2)2} 

The relation between Uz(x) in (4.4) and the Laplace transform ((Ax)tz)s ot 
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the moment of displacement ((Ax(t))z) ,  can be obtained by expanding 
(4.3) in powers of q2 using (4.4), and comparing the result with 

1 Z2([ Axl2,) . ,  j . s  = Uo(z) 
(A3) 

1 2 4 1 Ug(z) 
--4-f. = + - �9 , 2  

Defining @t+2(t) as the inverse Laplace transform of Ut(z ) (l = 0,2), one 
sees from (A3) that @2(0 is the second derivative of the mean square 
displacement and therefore (the analog of) the velocity correlation function 
(VAF): 

d 2 
02(t) = �89 ( ~ ) ([ Ax( t )  ]2)s = @x(O)vx(t)) s (A4) 

The last equality is only meaningful if Ax( t )  can be written as an integral 
over the x component of a "velocity" Vx(t ). Similarly, the Burnett correla- 
tion (29'3~ function @4(t) is related to the second derivative of  the fourth 
moment, and can be simply expressed in terms of "velocities" by virtue of 
(A3): 

~4(/) = ( t d T ( t d T  ' { <VxVx(Z)Vx(T')Vx( t))s 
dO dz 

- (VxVx(.C))s(Vx(.c')Vx(t))s} (A5) 

Similarly it follows from (A2) and (A3) that the time dependent transport 
coefficients are related to these correlation functions @t(t) as 

= D4(t)- f0'd  ( D ( 0 -  7) 

g D ( t ) =  d~- +2(,r ) (a6) 

D4(t  ) = fotd'r qb4('r ) 

If ~,2(t) and ~4(t) decay sufficiently fast for long times, B(t),  D(t), and 
Da(t ) will approach, respectively, the ordinary diffusion coefficient D = 
U0(0 ), the super-Burnett coefficient, B, and the modified super-Burnett 
coefficient, D 4 ---- U2(0 ). 

A P P E N D I X  B 

In this appendix we compute the equal time correlation functions 
@(r)o(r')SY(r").-. ), whose Fourier transforms are given in (4.11). The 
average is defined below (2.5) and ~(r) and 6Y(r, X) in (2.6). Since ~(r) and 
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8(r') are the only quantities depending on the phases of the movinl 
particles, we first perform the average at a frozen configuration X, a 
defined below (2.5). This yields 

(8 (r)8 (r')) x = ~8 (r - r')~ (r, X ) (B1 

The Fourier transform of this equation yields (4.10) in the body of th, 
paper. Hence, inside the average ( . . . )  we may replace 8(r)8(r') by th, 
right-hand side of (B1) with the result 

(8(r)8(r ' ) )  = ~'+8(r - r') (B2 

(8(r)8(r ' )SY(r"))  = ~'8(r - r')<6(r)SY(r")> 

= ~8(r - r')(8~(r)dY(r")) (B3 

(8(r)8(r')ar(r")ar(r'")) =  8(r - r')(~(r)SY(r")SY(r'")) 
= - r ' ) ( S Y ( r " ) a r ( r ' " ) )  

+  8(r - ( B 4  

where ~ = (~(r ,X))  is the average free volume fraction. The correlatim 
functions on the right-hand side of these equations refer to local propertie 
of the static medium. In Section 2 we have explicitly assumed that th, 
spatial correlations in the random medium are short ranged with correla 
tion length l o. Hence, the correlation functions appearing on the last line o 
(B3) and (B4) have the cluster property, i.e., they vanish whenever an' 
relative distance exceeds the correlation length l o. The Fourier transform 
(B2)-(B4) with wave numbers k < kc<<2rr/l o are therefore essentiall2 
independent of the wave numbers, and may be replaced by their values a 
zero wave number. This yields (4.11) as used in the body of the paper 
where 

6%(X ) = f d r  (~(r, X ) - +) 
(BsI 

8Kg ~ (X) = f dr (K~B (r, X) - 8~BD~) 

with + = (4( r ,X))  and ( K ~ ( r , X ) ) =  8~eD~p according to (3.3). The esti 
mates (4.12) also follow immediately. 
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